References
Abbott, M. B., Bathurst, J. C., Cunge, J. A., OâConnell, P. E., and Rasmussen, J.: An introduction to the European Hydrological System â Systeme Hydrologique Europeen, âSHEâ, 1: History and philosophy of a physically-based, distributed modelling system, J Hydrol (Amst), 87, 45â59, https://doi.org/10.1016/0022-1694(86)90114-9, 1986.
Abrahams, A. D., Li, G., Krishnan, C., and Atkinson, J. F.: A sediment transport equation for interrill overland flow on rough surfaces, Earth Surf Process Landf, 26, 1443â1459, https://doi.org/10.1002/esp.286, 2001.
ADB: Consultantâs Report Regional Technical Assistance: Water and Adaptation Interventions in Central and West Asia, 2012.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration â Guidelines for computing crop water requirements, FAO Irrigation and drainage paper, 56, 1998a.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop requirements, Irrigation and Drainage Paper No. 56, FAO, 300 pp., https://doi.org/10.1016/j.eja.2010.12.001, 1998b.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop requirements, Irrigation and Drainage Paper No. 56, FAO, 300 pp., https://doi.org/10.1016/j.eja.2010.12.001, 1998c.
Andersson, E.: User guide to ECMWF forecast products. Version 1.1, 2013.
Ariathurai, R. and Arulanandan, K.: Erosion Rates of Cohesive Soils, Journal of the Hydraulics Division, 104, 279â283, 1978.
Bartholomeus, R. P., Witte, J.-P. M., van Bodegom, P. M., van Dam, J. C., and Aerts, R.: Critical soil conditions for oxygen stress to plant roots: Substituting the Feddes-function by a process-based model, J Hydrol (Amst), 360, 147â165, https://doi.org/10.1016/j.jhydrol.2008.07.029, 2008.
Bastiaanssen, W. G. M., Allen, R. G., Droogers, P., DâUrso, G., and Steduto, P.: Twenty-five years modeling irrigated and drained soils: State of the art, Agric Water Manag, 92, 111â125, https://doi.org/10.1016/j.agwat.2007.05.013, 2007.
Batjes, N. H., Dijkshoorn, J. A., van Engelen, V. W. P., Fischer, G., Jones, A., Montanarella, L., Petri, M., Prieler, S., Teixeira, E., Wilberg, D., and Shi, X.: Harmonized World Soil Database (version 1.1), Rome, Italy and Laxenburg, Austria, 2009.
Batjes, N. H., Dijkshoorn, J. A., van Engelen, V. W. P., Fischer, G., Jones, A., Montanarella, L., Petri, M., Prieler, S., Teixeira, E., and Shi, X.: Harmonized World Soil Database (version 1.2), 2012.
van Beek, L. P. H. and Bierkens, M. F. P.: The Global Hydrological Model PCR-GLOBWB: Conceptualization, Parameterization and Verification, Utrecht, 2008.
Beven, K.: Kinematic subsurface stormflow, Water Resour Res, 17, 1419â1424, https://doi.org/10.1029/WR017i005p01419, 1981.
Beven, K. and Germann, P.: Macropores and water flow in soils, Water Resour Res, 18, 1311â1325, https://doi.org/10.1029/WR018i005p01311, 1982.
Beven, K. J.: Rainfall-runoff modelling: the primer, John Wiley & Sons, Ltd, Chichester, UK, 1â457 pp., https://doi.org/10.1002/9781119951001, 2012.
Bicknell, B. R., Imhoff, J. C., Kittle, J. L., Donigian, A. S., and Johanson, R. C.: Hydrological Simulation Program â FORTRAN, 1993.
Bierkens, M. F. P. and van Beek, L. P. H.: Seasonal Predictability of European Discharge: NAO and Hydrological Response Time, J Hydrometeorol, 10, 953â968, https://doi.org/10.1175/2009JHM1034.1, 2009.
Biswas, A. K. and Tortajada, C.: Future Water Governance: Problems and Perspectives, Int J Water Resour Dev, 26, 129â139, https://doi.org/10.1080/07900627.2010.488853, 2010.
Bontemps, S., Defourny, P., Bogaert, E., Arino, O., Kalogirou, V., and Ramos Perez, J.: GLOBCOVER 2009. Products Description and Validation Report, 2011.
Bouwer, H.: Infiltration of Water into Nonuniform Soil, Journal of the Irrigation and Drainage Division, 95, 451â462, 1969.
Bracken, C., Rajagopalan, B., and Prairie, J.: A multisite seasonal ensemble streamflow forecasting technique, Water Resour Res, 46, https://doi.org/10.1029/2009WR007965, 2010.
Bramer, L. M., Hornbuckle, B. K., and Caragea, P. C.: How Many Measurements of Soil Moisture within the Footprint of a GroundâBased Microwave Radiometer Are Required to Account for MeterâScale Spatial Variability?, Vadose Zone Journal, 12, 1â13, https://doi.org/10.2136/vzj2012.0100, 2013.
Brandt, C. J.: Simulation of the size distribution and erosivity of raindrops and throughfall drops, Earth Surf Process Landf, 15, 687â698, https://doi.org/10.1002/esp.3290150803, 1990.
Brown, C. B.: Discussion of Sedimentation in reservoirs, Proceedings of the American Society of Civil Engineers, 69, 1493â1500, 1943.
Brown, L. C. and Foster, G. R.: storm Erosivity Using Idealized Intensity Distributions, Transactions of the ASAE, 30, 0379â0386, https://doi.org/10.13031/2013.31957, 1987.
Brutsaert, W.: De Saint-Venant Equations Experimentally Verified, J. Hydr. Eng. Div.-ASCE, 97, 1387â1401, 1971.
Carlson, T. N. and Ripley, D. A.: On the relation between NDVI, fractional vegetation cover, and leaf area index, Remote Sens Environ, 62, 241â252, https://doi.org/10.1016/S0034-4257(97)00104-1, 1997.
Choi, K., Arnhold, S., Huwe, B., and Reineking, B.: Daily Based Morgan-Morgan-Finney (DMMF) Model: A Spatially Distributed Conceptual Soil Erosion Model to Simulate Complex Soil Surface Configurations, Water (Basel), 9, 278, https://doi.org/10.3390/w9040278, 2017.
Chow, V. Te: Open-Channel Hydraulics, McGraw-Hill Book Company, New York, US, 728 pp., https://doi.org/ISBN 07-010776-9, 1959.
Chow. V. Te: Open-Channel Hydraulics, McGraw-Hill Book Company, New York, US., 1959.
Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resour Res, 44, https://doi.org/10.1029/2007WR006735, 2008.
Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Brekke, L. D., Arnold, J. R., Gochis, D. J., and Rasmussen, R. M.: A unified approach for processâbased hydrologic modeling: 1. Modeling concept, Water Resour Res, 51, 2498â2514, https://doi.org/10.1002/2015WR017198, 2015a.
Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Gochis, D. J., Rasmussen, R. M., Tarboton, D. G., Mahat, V., Flerchinger, G. N., and Marks, D. G.: A unified approach for processâbased hydrologic modeling: 2. Model implementation and case studies, Water Resour Res, 51, 2515â2542, https://doi.org/10.1002/2015WR017200, 2015b.
Contreras, S., Hunink, J., and Baille, A.: Building a Watershed Information System for the Campo de Cartagena basin (Spain) integrating hydrological modeling and remote sensing, Wageningen, 2014.
Dai, A.: Drought under global warming: a review, WIREs Climate Change, 2, 45â65, https://doi.org/10.1002/wcc.81, 2011.
van Dam, J. C., Huygen, J., Wesseling, J. G., Feddes, R. A., Kabat, P., van Walsum, P. E. V., Groenendijk, P., and van Diepen, C. A.: Theory of SWAP version 2.0; simulation of water flow, solute transport and plant growth in the soil-water-atmosphere-plant environment, Tech. rep., 1997.
Deb S.K. and Shukla M.K.: Soil hydrology, land use and agriculture: measurement and modelling, edited by: Shukla, M. K., CAB International, UK, https://doi.org/10.1079/9781845937973.0000, 2011.
Doten, C. O., Bowling, L. C., Lanini, J. S., Maurer, E. P., and Lettenmaier, D. P.: A spatially distributed model for the dynamic prediction of sediment erosion and transport in mountainous forested watersheds, Water Resour Res, 42, https://doi.org/10.1029/2004WR003829, 2006.
Droogers, P. and Aerts, J.: Adaptation strategies to climate change and climate variability: A comparative study between seven contrasting river basins, Physics and Chemistry of the Earth, Parts A/B/C, 30, 339â346, https://doi.org/10.1016/j.pce.2005.06.015, 2005.
Droogers, P. and Bouma, J.: Simulation modelling for water governance in basins, Int J Water Resour Dev, 30, 475â494, https://doi.org/10.1080/07900627.2014.903771, 2014.
Droogers, P. and Immerzeel, W. W.: Wat is het beste model?, H2O Tijdschrift voor watervoorziening en waterbeheer, 38â41, 2010.
Droogers, P., Immerzeel, W. W., Terink, W., Hoogeveen, J., Bierkens, M. F. P., van Beek, L. P. H., and Debele, B.: Water resources trends in Middle East and North Africa towards 2050, Hydrol Earth Syst Sci, 16, 3101â3114, https://doi.org/10.5194/hess-16-3101-2012, 2012.
EEA: EU-DEM layers, Copernicus data and information funded by the European Union, 2014.
Eekhout, J. P. and De Vente, J.: How soil erosion model conceptualization affects soil loss projections under climate change, Progress in Physical Geography: Earth and Environment, 44, 212â232, https://doi.org/10.1177/0309133319871937, 2020.
Eekhout, J. P. C., Terink, W., and de Vente, J.: Assessing the large-scale impacts of environmental change using a coupled hydrology and soil erosion model, Earth Surface Dynamics, 6, 687â703, https://doi.org/10.5194/esurf-6-687-2018, 2018.
Eekhout, J. P. C., MillaresâValenzuela, A., MartĂnezâSalvador, A., GarcĂaâLorenzo, R., PĂ©rezâCutillas, P., ConesaâGarcĂa, C., and de Vente, J.: A processâbased soil erosion model ensemble to assess model uncertainty in climateâchange impact assessments, Land Degrad Dev, 32, 2409â2422, https://doi.org/10.1002/ldr.3920, 2021.
Endrizzi, S., Dallâ Amico, M., Gruber, S., and Rigon, R.: GEOtop Users Manual. User Manual Version 1.0, Zurich, 2011.
Endrizzi, S., Gruber, S., DallâAmico, M., and Rigon, R.: GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects, Geosci Model Dev, 7, 2831â2857, https://doi.org/10.5194/gmd-7-2831-2014, 2014.
EPA: Modeling at EPA, http://www.epa.gov/epahome/models.html, 2014.
Epema, G. F. and Riezebos, H. T.: Fall velocity of waterdrops at different heights as a factor influencing erosivity of simulated rain, in: Rainfall simulation runoff and soil erosion, edited by: de Ploey, J., 1â17, 1983.
Essery, R., Morin, S., Lejeune, Y., and B MĂ©nard, C.: A comparison of 1701 snow models using observations from an alpine site, Adv Water Resour, 55, 131â148, https://doi.org/10.1016/j.advwatres.2012.07.013, 2013.
FAO: CropWater Information, http://www.fao.org/nr/water/cropinfo.html, 2013.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Reviews of Geophysics, 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Feddes, R. A., Kowalik, P. J., and Zaradny, H.: Simulation of field water use and crop yield., Pudoc, Wageningen, 1978.
Finger, D., Pellicciotti, F., Konz, M., Rimkus, S., and Burlando, P.: The value of glacier mass balance, satellite snow cover images, and hourly discharge for improving the performance of a physically based distributed hydrological model, Water Resour Res, 47, https://doi.org/10.1029/2010WR009824, 2011.
Foglia, L., Hill, M. C., Mehl, S. W., and Burlando, P.: Sensitivity analysis, calibration, and testing of a distributed hydrological model using errorâbased weighting and one objective function, Water Resour Res, 45, https://doi.org/10.1029/2008WR007255, 2009.
van Genuchten, M. Th.: A Closedâform Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Science Society of America Journal, 44, 892â898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Gill, M. A.: Flood routing by the Muskingum method, J Hydrol (Amst), 36, 353â363, https://doi.org/10.1016/0022-1694(78)90153-1, 1978.
Gopalan, K., Wang, N.-Y., Ferraro, R., and Liu, C.: Status of the TRMM 2A12 Land Precipitation Algorithm, J Atmos Ocean Technol, 27, 1343â1354, https://doi.org/10.1175/2010JTECHA1454.1, 2010.
Govers, G.: Misapplications and Misconceptions of Erosion Models, in: Handbook of Erosion Modelling, edited by: Morgan, R. P. C. and Nearing, M. A., John Wiley & Sons, Ltd, Chichester, UK, 117â134, https://doi.org/10.1002/9781444328455.ch7, 2011.
Goward, S. N. and Huemmrich, K. F.: Vegetation canopy PAR absorptance and the normalized difference vegetation index: An assessment using the SAIL model, Remote Sens Environ, 39, 119â140, https://doi.org/10.1016/0034-4257(92)90131-3, 1992.
Grantz, K., Rajagopalan, B., Clark, M., and Zagona, E.: A technique for incorporating largeâscale climate information in basinâscale ensemble streamflow forecasts, Water Resour Res, 41, https://doi.org/10.1029/2004WR003467, 2005.
Hall, D. K., Riggs, G. A., Salomonson, V. V, DiGirolamo, N. E., and Bayr, K. J.: MODIS snow-cover products, Remote Sens Environ, 83, 181â194, https://doi.org/10.1016/S0034-4257(02)00095-0, 2002.
Hansen, E. and Engelund, F.: A Monograph on Sediment Transport in Alluvial Streams, Copenhagen, Denmark, 1967.
Hargreaves, G. H. and Samani, Z. A.: Reference Crop Evapotranspiration from Temperature, Appl Eng Agric, 1, 96â99, https://doi.org/10.13031/2013.26773, 1985.
Heber Green, W. and Ampt, G. A.: Studies on Soil Phyics., J Agric Sci, 4, 1â24, https://doi.org/10.1017/S0021859600001441, 1911.
HEC: Hydrologic Engineering Center (HEC) computer software for hydrologic engineering and planning analysis, http://www.hec.usace.army.mil/software/, 2014.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., BlagotiÄ, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded soil information based on machine learning, PLoS One, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Herrera, S., FernĂĄndez, J., and GutiĂ©rrez, J. M.: Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: assessing the effect of the interpolation methodology, International Journal of Climatology, 36, 900â908, https://doi.org/10.1002/joc.4391, 2016.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., HorĂĄnyi, A., MuñozâSabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., HĂłlm, E., JaniskovĂĄ, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and ThĂ©paut, J.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999â2049, https://doi.org/10.1002/qj.3803, 2020.
Hewlett, J. D.: Water Management, USDA Forest Service, Southeastern Forest Experiment Station, Ashville, 1961.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas, International Journal of Climatology, 25, 1965â1978, https://doi.org/10.1002/joc.1276, 2005.
Hock, R.: Temperature index melt modelling in mountain areas, J Hydrol (Amst), 282, 104â115, https://doi.org/10.1016/S0022-1694(03)00257-9, 2003.
Hock, R.: Glacier melt: a review of processes and their modelling, Progress in Physical Geography: Earth and Environment, 29, 362â391, https://doi.org/10.1191/0309133305pp453ra, 2005.
Hooghoudt, S.: Bijdragen tot de kennis van eenige natuurkundige grootheden van den grond. No. 7. Algemeene beschouwing van het probleem van de detailontwatering en de infiltratie door middel van parallel loopende drains, greppels, slooten en kanalen., Versl. Landbouwkd. Onderz, 46, 515â707, 1940.
Horton, R. E.: The RĂŽle of infiltration in the hydrologic cycle, Eos, Transactions American Geophysical Union, 14, 446â460, https://doi.org/10.1029/TR014i001p00446, 1933.
von Hoyningen-Huene, J.: Die Interzeption des Niederschlags in landwirtschaftlichen PflanzenbestÀnden, Arbeitsbericht Deutscher Verband fur Wasserwirtschaft und Kulturbau, DWK, 1981.
Immerzeel, W., Lutz, A. F., and Droogers, P.: Climate Change Impacts on the Upstream Water Resources of the Amu and Syr Darya River Basins, Wageningen, 2012a.
Immerzeel, W. W. and Bierkens, M. F. P.: Asiaâs water balance, Nat Geosci, 5, 841â842, https://doi.org/10.1038/ngeo1643, 2012.
Immerzeel, W. W. and Droogers, P.: Calibration of a distributed hydrological model based on satellite evapotranspiration, J Hydrol (Amst), 349, 411â424, https://doi.org/10.1016/j.jhydrol.2007.11.017, 2008.
Immerzeel, W. W., Droogers, P., de Jong, S. M., and Bierkens, M. F. P.: Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing, Remote Sens Environ, 113, 40â49, https://doi.org/10.1016/j.rse.2008.08.010, 2009.
Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate Change Will Affect the Asian Water Towers, Science (1979), 328, 1382â1385, https://doi.org/10.1126/science.1183188, 2010.
Immerzeel, W. W., van Beek, L. P. H., Konz, M., Shrestha, A. B., and Bierkens, M. F. P.: Hydrological response to climate change in a glacierized catchment in the Himalayas, Clim Change, 110, 721â736, https://doi.org/10.1007/s10584-011-0143-4, 2012b.
Irrisoft: Irrisoft: Database and on-line Applications in Irrigation, Drainage & Hydrology, 2014.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., DĂ©quĂ©, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution climate change projections for European impact research, Reg Environ Change, 14, 563â578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Jin, C. X., Römkens, J. M., and Griffioen, F.: Estimating manningâs roughness coefficient for shallow overland flow in non-submerged vegetative filter strips, Transactions of the ASAE, 43, 1459â1466, 2000.
de Jong, S. and Jetten, V.: Distributed, quantitative assessment of canopy storage capacity by Hyperspectral Remote Sensing, 2010.
Karssenberg, D.: The value of environmental modelling languages for building distributed hydrological models, Hydrol Process, 16, 2751â2766, https://doi.org/10.1002/hyp.1068, 2002.
Karssenberg, D., Burrough, P. A., Sluiter, R., and de Jong, K.: The PCRaster Software and Course Materials for Teaching Numerical Modelling in the Environmental Sciences, Transactions in GIS, 5, 99â110, https://doi.org/10.1111/1467-9671.00070, 2001.
Karssenberg, D., Schmitz, O., Salamon, P., de Jong, K., and Bierkens, M. F. P.: A software framework for construction of process-based stochastic spatio-temporal models and data assimilation, Environmental Modelling & Software, 25, 489â502, https://doi.org/10.1016/j.envsoft.2009.10.004, 2010.
Kerby, W. S.: Time of concentration for overland flow., Civil Engineering, 29, 1959.
Khanal, S., Lutz, A. F., Kraaijenbrink, P. D. A., van den Hurk, B., Yao, T., and Immerzeel, W. W.: Variable 21st Century Climate Change Response for Rivers in High Mountain Asia at Seasonal to Decadal Time Scales, Water Resour Res, 57, https://doi.org/10.1029/2020WR029266, 2021.
Kirpich, Z. P.: Time of concentration of small agricultural watersheds. , Civil Engineering, 10, 1940.
Van Der Knijff, J. M., Younis, J., and De Roo, A. P. J.: LISFLOOD: a GISâbased distributed model for river basin scale water balance and flood simulation, International Journal of Geographical Information Science, 24, 189â212, https://doi.org/10.1080/13658810802549154, 2010.
Kokkonen, T., Koivusalo, H., Jakeman, A., and Norton, J.: Construction of a degree-day snow model in the light of the ten iterative steps in model development, in: iEMSs Third Biennial Meeting: âSummit on Environmental Modelling and Softwareâ., 2006.
Kozak, J. A., Ahuja, L. R., Green, T. R., and Ma, L.: Modelling crop canopy and residue rainfall interception effects on soil hydrological components for semiâarid agriculture, Hydrol Process, 21, 229â241, https://doi.org/10.1002/hyp.6235, 2007.
Krysanova, V., MĂŒller-Wohlfeil, D.-I., and Becker, A.: Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds, Ecol Modell, 106, 261â289, https://doi.org/10.1016/S0304-3800(97)00204-4, 1998.
Krysanova, V., Wechsung, J., Arnold, R., Srinivasan, R., and Williams, J.: PIK Report Nr. 69 âSWIM (Soil and Water Integrated Model), User Manual,â Potsdam, 2000.
Krysanova, V., Hattermann, F., Huang, S., Hesse, C., Vetter, T., Liersch, S., Koch, H., and Kundzewicz, Z. W.: Modelling climate and land-use change impacts with SWIM: lessons learnt from multiple applications, Hydrological Sciences Journal, 60, 606â635, https://doi.org/10.1080/02626667.2014.925560, 2015.
Lall, U.: DebatesâThe future of hydrological sciences: A (common) path forward? One water. One world. Many climes. Many souls, Water Resour Res, 50, 5335â5341, https://doi.org/10.1002/2014WR015402, 2014.
Lambert, J. J., Daroussin, J., Eimberck, M., Le Bas, C., Jamagne, M., King, D., and Montanarella, L.: Soil Geographical Database for Eurasia & The Mediterranean: Instructions Guide for Elaboration at scale 1:1,000,000 version 4.0. EUR 20422 EN., Ispra, Italy, 2003.
Lazar, A. N., Butterfield, D., Futter, M. N., Rankinen, K., Thouvenot-Korppoo, M., Jarritt, N., Lawrence, D. S. L., Wade, A. J., and Whitehead, P. G.: An assessment of the fine sediment dynamics in an upland river system: INCA-Sed modifications and implications for fisheries, Science of The Total Environment, 408, 2555â2566, https://doi.org/10.1016/j.scitotenv.2010.02.030, 2010.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land surface water and energy fluxes for general circulation models, Journal of Geophysical Research: Atmospheres, 99, 14415â14428, https://doi.org/10.1029/94JD00483, 1994.
Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification, Glob Planet Change, 13, 195â206, https://doi.org/10.1016/0921-8181(95)00046-1, 1996.
Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., and Arheimer, B.: Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales, Hydrology Research, 41, 295â319, https://doi.org/10.2166/nh.2010.007, 2010.
Liu, Y., Gupta, H., Springer, E., and Wagener, T.: Linking science with environmental decision making: Experiences from an integrated modeling approach to supporting sustainable water resources management, Environmental Modelling & Software, 23, 846â858, https://doi.org/10.1016/j.envsoft.2007.10.007, 2008.
Lukey, B. T., Bathurst, J. C., Hiley, R. A., and Ewen, J.: SHETRAN sediment transport component: equations and algorithms., Newcastle, United Kingdom, 1995.
Lutz, A. F., Droogers, P., and Immerzeel, W.: Climate Change Impact and Adaptation on the Water Resources in the Amu Darya and Syr Darya River Basins., Wageningen, 2012.
Lutz, A. F., Immerzeel, W. W., Gobiet, A., Pellicciotti, F., and Bierkens, M. F. P.: Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for Central Asian glaciers, Hydrol Earth Syst Sci, 17, 3661â3677, https://doi.org/10.5194/hess-17-3661-2013, 2013.
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.: Consistent increase in High Asiaâs runoff due to increasing glacier melt and precipitation, Nat Clim Chang, 4, 587â592, https://doi.org/10.1038/nclimate2237, 2014.
Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D. A., Shrestha, A. B., and Bierkens, M. F. P.: Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes, PLoS One, 11, e0165630, https://doi.org/10.1371/journal.pone.0165630, 2016.
Manning R.: On the flow of water in open channels and pipes., Transactions of the Institution of Civil Engineers of Ireland, 20, 161â207, 1891.
Marshall, J. S. and Palmer, W. M. K.: THE DISTRIBUTION OF RAINDROPS WITH SIZE, Journal of Meteorology, 5, 165â166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2, 1948.
McPhee, J., Rubio-Alvarez, E., Meza, R., Ayala, A., Vargas, X., and Vicuna, S.: An Approach to Estimating Hydropower Impacts of Climate Change from a Regional Perspective, in: Watershed Management 2010, 13â24, https://doi.org/10.1061/41143(394)2, 2010.
Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., Stouffer, R. J., and Taylor, K. E.: THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research, Bull Am Meteorol Soc, 88, 1383â1394, https://doi.org/10.1175/BAMS-88-9-1383, 2007.
Mendoza, P. A., McPhee, J., and Vargas, X.: Uncertainty in flood forecasting: A distributed modeling approach in a sparse data catchment, Water Resour Res, 48, https://doi.org/10.1029/2011WR011089, 2012.
Monteith, J. L.: Principles of environmental physics. , Edward Arnold, London, 241 pp., https://doi.org/10.1002/qj.49710042414, 1973.
Morgan, R. P. C.: Soil Erosion and Conservation, 3rd ed., Blackwell Science Ltd, Malden, USA, 2005.
Morgan, R. P. C. and Duzant, J. H.: Modified MMF (MorganâMorganâFinney) model for evaluating effects of crops and vegetation cover on soil erosion, Earth Surf Process Landf, 33, 90â106, https://doi.org/10.1002/esp.1530, 2008.
Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., Styczen, M. E., and Folly, A. J. V.: The European soil erosion model (EUROSEM): documentation and user guide (No. Version 3.6), Silsoe, United Kingdom, 1998.
Morris, E. M. and Woolhiser, D. A.: Unsteady oneâdimensional flow over a plane: Partial equilibrium and recession hydrographs, Water Resour Res, 16, 355â360, https://doi.org/10.1029/WR016i002p00355, 1980.
Myneni, R. B. and Williams, D. L.: On the relationship between FAPAR and NDVI, Remote Sens Environ, 49, 200â211, https://doi.org/10.1016/0034-4257(94)90016-7, 1994.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I â A discussion of principles, J Hydrol (Amst), 10, 282â290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and Water Assessment Tool (SWAT). Theoretical Documentation, College Station, Texas, 2009.
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements, J Geophys Res, 116, D12109, https://doi.org/10.1029/2010JD015139, 2011.
Oogathoo, S., Prasher, S., Rudra, R., and Patel, R.: Calibration and validation of the MIKE SHE model in Canagagigue Creek watershed, in: Agricultural and biosystems engineering for a sustainable world. , in: International Conference on Agricultural Engineering, 2008.
Parajka, J. and Blöschl, G.: Spatioâtemporal combination of MODIS images â potential for snow cover mapping, Water Resour Res, 44, https://doi.org/10.1029/2007WR006204, 2008.
Park, S. W., Mitchell, J. K., and Scarborough, J. N.: Soil Erosion Simulation on Small Watersheds: A Modified ANSWERS Model, Transactions of the ASAE, 25, 1581â1588, https://doi.org/10.13031/2013.33771, 1982.
Pechlivanidis, I., Jackson, B., McIntyre, N., and Weather, H.: Catchment scale hydrological modelling: A review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications, Global NEST journal , 13, 193â214, 2011.
Peng, D., Zhang, B., and Liu, L.: Comparing spatiotemporal patterns in Eurasian FPAR derived from two NDVI-based methods, Int J Digit Earth, 5, 283â298, https://doi.org/10.1080/17538947.2011.598193, 2012.
Petryk, S. and Bosmajian, G.: Analysis of flow through vegetation, Journal of the Hydraulics Division, 101, 871â884, 1975.
Piechota, T. C., Chiew, F. H. C., and Dracup, J. A.: Seasonal streamflow forecasting in eastern Australia and the El Niño â Southern Oscillation , Water Resour Res, 34, 3035â3044, 1998.
Poesen, J.: Soil erosion in the Anthropocene: Research needs, Earth Surf Process Landf, 43, 64â84, https://doi.org/10.1002/esp.4250, 2018.
Poesen, J. W., van Wesemael, B., Bunte, K., and Benet, A. S.: Variation of rock fragment cover and size along semiarid hillslopes: a case-study from southeast Spain, Geomorphology, 23, 323â335, 1998.
Pomeroy, J. W., Gray, D. M., Brown, T., Hedstrom, N. R., Quinton, W. L., Granger, R. J., and Carey, S. K.: The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence, Hydrol Process, 21, 2650â2667, https://doi.org/10.1002/hyp.6787, 2007.
Prosser, I. P. and Rustomji, P.: Sediment transport capacity relations for overland flow, Progress in Physical Geography: Earth and Environment, 24, 179â193, https://doi.org/10.1177/030913330002400202, 2000.
Quansah, C.: Laboratory experimentation for the statistical derivation of equations for soil erosion modelling and soil conservation design, Cranfield Institute of Technology, 365 pp., 1982.
Rafn, E. B., Contor, B., and Ames, D. P.: Evaluation of a Method for Estimating Irrigated Crop-Evapotranspiration Coefficients from Remotely Sensed Data in Idaho, Journal of Irrigation and Drainage Engineering, 134, 722â729, https://doi.org/10.1061/(ASCE)0733-9437(2008)134:6(722), 2008.
Ragettli, S. and Pellicciotti, F.: Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: On the use of knowledge from glaciometeorological processes to constrain model parameters, Water Resour Res, 48, https://doi.org/10.1029/2011WR010559, 2012.
Ragettli, S., CortĂ©s, G., McPhee, J., and Pellicciotti, F.: An evaluation of approaches for modelling hydrological processes in highâelevation, glacierized Andean watersheds, Hydrol Process, 28, 5674â5695, https://doi.org/10.1002/hyp.10055, 2014.
Ragettli, S., Pellicciotti, F., Immerzeel, W. W., Miles, E. S., Petersen, L., Heynen, M., Shea, J. M., Stumm, D., Joshi, S., and Shrestha, A.: Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model, Adv Water Resour, 78, 94â111, https://doi.org/10.1016/j.advwatres.2015.01.013, 2015.
Refshaard, J. and Storm, B.: MIKE SHE, 1995.
Regonda, S. K., Rajagopalan, B., Clark, M., and Zagona, E.: A multimodel ensemble forecast framework: Application to spring seasonal flows in the Gunnison River Basin, Water Resour Res, 42, https://doi.org/10.1029/2005WR004653, 2006.
Reid, T. D., Carenzo, M., Pellicciotti, F., and Brock, B. W.: Including debris cover effects in a distributed model of glacier ablation, Journal of Geophysical Research: Atmospheres, 117, https://doi.org/10.1029/2012JD017795, 2012.
Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D. C.: Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), https://doi.org/DC0-16-048938-5 65â100, 1997.
RGI 7.0 Consortium: Randolph Glacier Inventory - A Dataset of Global Glacier Outlines, Version 7.0., 2023.
Rigon, R., Bertoldi, G., and Over, T. M.: GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets, J Hydrometeorol, 7, 371â388, https://doi.org/10.1175/JHM497.1, 2006.
Rockström, J., Falkenmark, M., Lannerstad, M., and Karlberg, L.: The planetary water drama: Dual task of feeding humanity and curbing climate change, Geophys Res Lett, 39, https://doi.org/10.1029/2012GL051688, 2012.
Rollenbeck, R. and Bendix, J.: Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations, Atmos Res, 99, 277â289, https://doi.org/10.1016/j.atmosres.2010.10.018, 2011.
Van Rompaey, A. J. J., Verstraeten, G., Van Oost, K., Govers, G., and Poesen, J.: Modelling mean annual sediment yield using a distributed approach, Earth Surf Process Landf, 26, 1221â1236, https://doi.org/10.1002/esp.275, 2001.
Roussel, M. C., Thompson, D. B., Fang, X., Cleveland, T. G., and Garcia, C. A.: Timing-parameter estimation for applicable Texas watersheds, 2005.
Samain, B., Simons, G. W. H., Voogt, M. P., Defloor, W., Bink, N.-J., and Pauwels, V. R. N.: Consistency between hydrological model, large aperture scintillometer and remote sensing based evapotranspiration estimates for a heterogeneous catchment, Hydrol Earth Syst Sci, 16, 2095â2107, https://doi.org/10.5194/hess-16-2095-2012, 2012.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a gridâbased hydrologic model at the mesoscale, Water Resour Res, 46, https://doi.org/10.1029/2008WR007327, 2010.
Sangrey, D. A., HarropâWilliams, K. O., and Klaiber, J. A.: Predicting GroundâWater Response to Precipitation, Journal of Geotechnical Engineering, 110, 957â975, https://doi.org/10.1061/(ASCE)0733-9410(1984)110:7(957), 1984.
Saxton, K. E. and Rawls, W. J.: Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions, Soil Science Society of America Journal, 70, 1569â1578, https://doi.org/10.2136/sssaj2005.0117, 2006.
Schaner, N., Voisin, N., Nijssen, B., and Lettenmaier, D. P.: The contribution of glacier melt to streamflow, Environmental Research Letters, 7, 034029, https://doi.org/10.1088/1748-9326/7/3/034029, 2012.
Schmitz, O., Karssenberg, D., van Deursen, W. P. A., and Wesseling, C. G.: Linking external components to a spatio-temporal modelling framework: Coupling MODFLOW and PCRaster, Environmental Modelling & Software, 24, 1088â1099, https://doi.org/10.1016/j.envsoft.2009.02.018, 2009.
Schmitz, O., Karssenberg, D., de Jong, K., de Kok, J.-L., and de Jong, S. M.: Map algebra and model algebra for integrated model building, Environmental Modelling & Software, 48, 113â128, https://doi.org/10.1016/j.envsoft.2013.06.009, 2013.
Sellers, P. J., Tucker, C. J., Collatz, G. J., Los, S. O., Justice, C. O., Dazlich, D. A., and Randall, D. A.: A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data, J Clim, 9, 706â737, https://doi.org/10.1175/1520-0442(1996)009<0706:ARLSPF>2.0.CO;2, 1996.
Serrano-Notivoli, R., BeguerĂa, S., Saz, M. Ă., Longares, L. A., and de Luis, M.: SPREAD: a high-resolution daily gridded precipitation dataset for Spain â an extreme events frequency and intensity overview, Earth Syst Sci Data, 9, 721â738, https://doi.org/10.5194/essd-9-721-2017, 2017.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling, J Clim, 19, 3088â3111, https://doi.org/10.1175/JCLI3790.1, 2006.
Simons, G. W. H., Koster, R., and Droogers, P.: HiHydroSoil v2.0 - A high resolution soil map of global hydraulic properties, Wageningen, 2020.
Singh, P. and Kumar, N.: Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan river, J Hydrol (Amst), 193, 316â350, https://doi.org/10.1016/S0022-1694(96)03142-3, 1997.
Sloan, P. G. and Moore, I. D.: Modeling subsurface stormflow on steeply sloping forested watersheds, Water Resour Res, 20, 1815â1822, https://doi.org/10.1029/WR020i012p01815, 1984.
Smedema, L. K. and Rycroft, D. W.: Land Drainage-Planning and Design of Agricultural Drainage Systems., Cornell University Press, Ithaca, New York, 1983.
Sorg, A., Bolch, T., Stoffel, M., Solomina, O., and Beniston, M.: Climate change impacts on glaciers and runoff in Tien Shan (Central Asia), Nat Clim Chang, 2, 725â731, https://doi.org/10.1038/nclimate1592, 2012.
Sperna Weiland, F. C., van Beek, L. P. H., Kwadijk, J. C. J., and Bierkens, M. F. P.: The ability of a GCM-forced hydrological model to reproduce global discharge variability, Hydrol Earth Syst Sci, 14, 1595â1621, https://doi.org/10.5194/hess-14-1595-2010, 2010.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, Bull Am Meteorol Soc, 93, 485â498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Terink, W., Lutz, A. F., and Simons, G. W. H.: SPHY: Spatial Processes in HYdrology. Case-studies for training., 2015a.
Terink, W., Lutz, A. F., and Immerzeel, W. W.: SPHY: Spatial Processes in HYdrology. Graphical User-Interfaces (GUIs)., 2015b.
Terink, W., Lutz, A. F., Simons, G. W. H., Immerzeel, W. W., and Droogers, P.: SPHY v2.0: Spatial Processes in HYdrology, Geosci Model Dev, 8, 2009â2034, https://doi.org/10.5194/gmd-8-2009-2015, 2015c.
ThemeĂl, M. J., Gobiet, A., and Heinrich, G.: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal, Clim Change, 112, 449â468, https://doi.org/10.1007/s10584-011-0224-4, 2012.
Tollner, E. W., Barfield, B. J., Haan, C. T., and Kao, T. Y.: Suspended Sediment Filtration Capacity of Simulated Vegetation, Transactions of the ASAE, 19, 0678â0682, https://doi.org/10.13031/2013.36095, 1976.
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens Environ, 8, 127â150, https://doi.org/10.1016/0034-4257(79)90013-0, 1979.
USGS: Landsat 8: U.S. Geological Survey Fact Sheet, 2013â3060 pp., 2013.
USGS: Water Resources Applications Software, 2014.
VanderKwaak, J. E. and Loague, K.: HydrologicâResponse simulations for the Râ5 catchment with a comprehensive physicsâbased model, Water Resour Res, 37, 999â1013, https://doi.org/10.1029/2000WR900272, 2001.
Venetis, C.: A STUDY ON THE RECESSION OF UNCONFINED ACQUIFERS, International Association of Scientific Hydrology. Bulletin, 14, 119â125, https://doi.org/10.1080/02626666909493759, 1969.
de Vente, J., Poesen, J., Verstraeten, G., Van Rompaey, A., and Govers, G.: Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain, Glob Planet Change, 60, 393â415, https://doi.org/10.1016/j.gloplacha.2007.05.002, 2008.
de Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., Arabkhedri, M., and Boix-Fayos, C.: Predicting soil erosion and sediment yield at regional scales: Where do we stand?, Earth Sci Rev, 127, 16â29, https://doi.org/10.1016/j.earscirev.2013.08.014, 2013a.
de Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., Arabkhedri, M., and Boix-Fayos, C.: Predicting soil erosion and sediment yield at regional scales: Where do we stand?, Earth Sci Rev, 127, 16â29, https://doi.org/10.1016/j.earscirev.2013.08.014, 2013b.
Verbunt, M., Gurtz, J., Jasper, K., Lang, H., Warmerdam, P., and Zappa, M.: The hydrological role of snow and glaciers in alpine river basins and their distributed modeling, J Hydrol (Amst), 282, 36â55, https://doi.org/10.1016/S0022-1694(03)00251-8, 2003.
Vicuña, S., Garreaud, R. D., and McPhee, J.: Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile, Clim Change, 105, 469â488, https://doi.org/10.1007/s10584-010-9888-4, 2011.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: An overview, Clim Change, 109, 5â31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Wada, Y., van Beek, L. P. H., van Kempen, C. M., Reckman, J. W. T. M., Vasak, S., and Bierkens, M. F. P.: Global depletion of groundwater resources, Geophys Res Lett, 37, https://doi.org/10.1029/2010GL044571, 2010.
Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., Kumar, P., Rao, P. S. C., Basu, N. B., and Wilson, J. S.: The future of hydrology: An evolving science for a changing world, Water Resour Res, 46, https://doi.org/10.1029/2009WR008906, 2010.
Wagner, P. D., Fiener, P., Wilken, F., Kumar, S., and Schneider, K.: Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions, J Hydrol (Amst), 464â465, 388â400, https://doi.org/10.1016/j.jhydrol.2012.07.026, 2012.
Wheeler, T. and von Braun, J.: Climate Change Impacts on Global Food Security, Science (1979), 341, 508â513, https://doi.org/10.1126/science.1239402, 2013.
Wicks, J. M.: Physically-based mathematical modelling of catchment sediment yield, University of Newcastle upon Tyne, 1988.
Wicks, J. M. and Bathurst, J. C.: SHESED: a physically based, distributed erosion and sediment yield component for the SHE hydrological modelling system, J Hydrol (Amst), 175, 213â238, https://doi.org/10.1016/S0022-1694(96)80012-6, 1996.
Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P.: A distributed hydrologyâvegetation model for complex terrain, Water Resour Res, 30, 1665â1679, https://doi.org/10.1029/94WR00436, 1994.
Williams, J. R.: HYMO flood routing, J Hydrol (Amst), 26, 17â27, https://doi.org/10.1016/0022-1694(75)90122-5, 1975.
Williams, J. R.: The EPIC Model., in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Highlands Ranch, 909â1000, 1995.
Wischmeier, W. H. and Smith, D. D.: Predicting rainfall erosion losses, Agriculture handbook no. 537, 285â291, https://doi.org/10.1029/TR039i002p00285, 1978.
Wischmeier, W. H., Johnson, C. B., and Cross, B. V.: A Soil Erodibility Nomograph for Farmland and Construction Sites, J Soil Water Conserv, 189â193, 1971.
Woolhiser, D. A., Smith, R. E., and Goodrich, D. C.: KINEROS, A Kinematic Runoff and Erosion Model: Documentation and user manial., Washington, D.C., 1990.
Yalin, M. S.: An Expression for Bed-Load Transportation, Journal of the Hydraulics Division, 89, 221â250, https://doi.org/10.1061/JYCEAJ.0000874, 1963.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges, Bull Am Meteorol Soc, 93, 1401â1415, https://doi.org/10.1175/BAMS-D-11-00122.1, 2012.
Last updated