SPHY Manual - All versions
  • 📚Readme
  • manual
    • SPHY manual 3.1
      • Introduction
      • Theory
        • Background
        • Modules
        • Reference and potential evaporation
        • Dynamic vegetation processes
        • Snow processes
        • Glacier processes
        • Soil water processes
        • Soil erosion processes
        • Routing
      • Applications
        • Irrigation management in lowland areas
        • Snow- and glacier-fed river basins
        • Flow forecasting
        • Soil erosion and sediment transport
      • Installation of SPHY
        • Installing SPHY as a stand-alone application
          • Miniconda
          • SPHY v3.1 source code
      • Build your own SPHY-model
        • Select projection extent and resolution
        • Clone map
        • DEM and Slope
        • Delineate catchment and create local drain direction map
        • Preparing stations map and sub-basin.map
        • Glacier table
        • Soil hydraulic properties
        • Other static input maps
        • Meteorological forcing map series
        • Open water evaporation
        • Dynamic vegetation module
        • Soil erosion model input
          • MMF
          • Soil erosion model calibration
          • Soil erosion model output
        • Sediment transport
      • Reporting and other utilities
        • Reporting
        • NetCDF
      • References
      • Copyright
      • Appendix 1: Input and Output
      • Appendix 2: Input and Output description
      • Appendix 3: Soil erosion model input
        • MUSLE
        • INCA
        • SHETRAN
        • DHVSM
        • HSFP
    • SPHY manual 3.0
      • Introduction
      • Theory
        • Background
        • Modules
        • Reference and potential evaporation
        • Dynamic vegetation processes
        • Snow processes
        • Glacier processes
        • Soil water processes
        • Soil erosion processes
        • Routing
      • Applications
        • Irrigation management in lowland areas
        • Snow- and glacier-fed river basins
        • Flow forecasting
      • Installation of SPHY
        • General
        • Installing SPHY as a stand-alone application
          • Miniconda
          • SPHY v3.1 source code
      • Build your own SPHY-model
        • Select projection extent and resolution
        • Clone map
        • DEM and Slope
        • Delineate catchment and create local drain direction map
        • Preparing stations map and sub-basin.map
        • Glacier fraction map
        • Soil hydraulic properties
        • Other static input maps
        • Meteorological forcing map series
        • Open water evaporation
        • Dynamic vegetation module
        • Soil erosion model input
          • MUSLE
          • MMF
          • INCA
          • SHETRAN
          • DHVSM
          • HSFP
          • Soil erosion model calibration
          • Soil erosion model output
        • Sediment transport
        • Applications
        • Reporting
        • NetCDF
      • References
      • Copyright
      • Appendix 1: Input and Output
Powered by GitBook
On this page
  1. manual
  2. SPHY manual 3.1
  3. Build your own SPHY-model

Meteorological forcing map series

Meteorological forcing map-series are series of input maps with the time step indicated in each filename. The filenames have a strict format with 8 characters before a dot (.), and three characters behind the dot. For example the average temperature maps can have the format tavg0000.001, tavg0000.002, etc. To generate forcing data you have two options:

  1. interpolate point station data to grids at the model extent and resolution, and convert to PCRaster grid format.

  2. resample existing gridded meteorological data products to model extent and resolution and convert to PCRaster grid format.

  3. Depending on the number of time steps in your model you will probably need to write a script to batch this process and repeat it automatically for multiple time steps. A script like this can be created in any scripting language like for example Python or R. This procedure is automated in the SPHY preprocessor plugin (Terink et al., 2015b).

PreviousOther static input mapsNextOpen water evaporation

Last updated 1 year ago